async-graphql/src/dataloader/mod.rs

612 lines
18 KiB
Rust

//! Batch loading support, used to solve N+1 problem.
//!
//! # Examples
//!
//! ```rust
//! use async_graphql::*;
//! use async_graphql::dataloader::*;
//! use std::collections::{HashSet, HashMap};
//! use std::convert::Infallible;
//! use async_graphql::dataloader::Loader;
//!
//! /// This loader simply converts the integer key into a string value.
//! struct MyLoader;
//!
//! #[async_trait::async_trait]
//! impl Loader<i32> for MyLoader {
//! type Value = String;
//! type Error = Infallible;
//!
//! async fn load(&self, keys: &[i32]) -> Result<HashMap<i32, Self::Value>, Self::Error> {
//! // Use `MyLoader` to load data.
//! Ok(keys.iter().copied().map(|n| (n, n.to_string())).collect())
//! }
//! }
//!
//! struct Query;
//!
//! #[Object]
//! impl Query {
//! async fn value(&self, ctx: &Context<'_>, n: i32) -> Option<String> {
//! ctx.data_unchecked::<DataLoader<MyLoader>>().load_one(n).await.unwrap()
//! }
//! }
//!
//! # tokio::runtime::Runtime::new().unwrap().block_on(async move {
//! let schema = Schema::new(Query, EmptyMutation, EmptySubscription);
//! let query = r#"
//! {
//! v1: value(n: 1)
//! v2: value(n: 2)
//! v3: value(n: 3)
//! v4: value(n: 4)
//! v5: value(n: 5)
//! }
//! "#;
//! let request = Request::new(query).data(DataLoader::new(MyLoader));
//! let res = schema.execute(request).await.into_result().unwrap().data;
//!
//! assert_eq!(res, value!({
//! "v1": "1",
//! "v2": "2",
//! "v3": "3",
//! "v4": "4",
//! "v5": "5",
//! }));
//! # });
//! ```
mod cache;
use std::any::{Any, TypeId};
use std::borrow::Cow;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Mutex;
use std::time::Duration;
use fnv::FnvHashMap;
use futures_channel::oneshot;
use futures_timer::Delay;
pub use cache::{CacheFactory, CacheStorage, HashMapCache, LruCache, NoCache};
#[allow(clippy::type_complexity)]
struct ResSender<K: Send + Sync + Hash + Eq + Clone + 'static, T: Loader<K>> {
use_cache_values: HashMap<K, T::Value>,
tx: oneshot::Sender<Result<HashMap<K, T::Value>, T::Error>>,
}
struct Requests<K: Send + Sync + Hash + Eq + Clone + 'static, T: Loader<K>> {
keys: HashSet<K>,
pending: Vec<(HashSet<K>, ResSender<K, T>)>,
cache_storage: Box<dyn CacheStorage<Key = K, Value = T::Value>>,
disable_cache: bool,
}
type KeysAndSender<K, T> = (HashSet<K>, Vec<(HashSet<K>, ResSender<K, T>)>);
impl<K: Send + Sync + Hash + Eq + Clone + 'static, T: Loader<K>> Requests<K, T> {
fn new<C: CacheFactory>(cache_factory: &C) -> Self {
Self {
keys: Default::default(),
pending: Vec::new(),
cache_storage: cache_factory.create::<K, T::Value>(),
disable_cache: false,
}
}
fn take(&mut self) -> KeysAndSender<K, T> {
(
std::mem::take(&mut self.keys),
std::mem::take(&mut self.pending),
)
}
}
async fn do_load<K, T, F>(
loader: &T,
keys: HashSet<K>,
pending: Vec<(HashSet<K>, ResSender<K, T>)>,
f: F,
) where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
F: FnOnce(&HashMap<K, T::Value>),
{
let keys = keys.into_iter().collect::<Vec<_>>();
match loader.load(&keys).await {
Ok(values) => {
f(&values);
for (keys, sender) in pending {
let mut res = HashMap::new();
res.extend(sender.use_cache_values);
for key in &keys {
res.extend(values.get(key).map(|value| (key.clone(), value.clone())));
}
sender.tx.send(Ok(res)).ok();
}
}
Err(err) => {
for (_, sender) in pending {
sender.tx.send(Err(err.clone())).ok();
}
}
}
}
/// Trait for batch loading.
#[async_trait::async_trait]
pub trait Loader<K: Send + Sync + Hash + Eq + Clone + 'static>: Send + Sync + 'static {
/// type of value.
type Value: Send + Sync + Clone + 'static;
/// Type of error.
type Error: Send + Clone + 'static;
/// Load the data set specified by the `keys`.
async fn load(&self, keys: &[K]) -> Result<HashMap<K, Self::Value>, Self::Error>;
}
/// Data loader.
///
/// Reference: <https://github.com/facebook/dataloader>
pub struct DataLoader<T, C = NoCache> {
requests: Mutex<FnvHashMap<TypeId, Box<dyn Any + Sync + Send>>>,
cache_factory: C,
delay: Duration,
max_batch_size: usize,
loader: T,
disable_cache: AtomicBool,
}
impl<T> DataLoader<T, NoCache> {
/// Use `Loader` to create a [DataLoader] that does not cache records.
pub fn new(loader: T) -> Self {
Self {
cache_factory: NoCache,
requests: Default::default(),
delay: Duration::from_millis(1),
max_batch_size: 1000,
loader,
disable_cache: false.into(),
}
}
}
impl<T, C: CacheFactory> DataLoader<T, C> {
/// Use `Loader` to create a [DataLoader] with a cache factory.
pub fn with_cache(loader: T, cache_factory: C) -> Self {
Self {
cache_factory,
requests: Default::default(),
delay: Duration::from_millis(1),
max_batch_size: 1000,
loader,
disable_cache: false.into(),
}
}
/// Specify the delay time for loading data, the default is `1ms`.
pub fn delay(self, delay: Duration) -> Self {
Self { delay, ..self }
}
/// pub fn Specify the max batch size for loading data, the default is `1000`.
///
/// If the keys waiting to be loaded reach the threshold, they are loaded immediately.
pub fn max_batch_size(self, max_batch_size: usize) -> Self {
Self {
max_batch_size,
..self
}
}
/// Get the loader.
#[inline]
pub fn loader(&self) -> &T {
&self.loader
}
/// Enable/Disable cache of all loaders.
pub fn enable_all_cache(&self, enable: bool) {
self.disable_cache.store(!enable, Ordering::SeqCst);
}
/// Enable/Disable cache of specified loader.
pub fn enable_cache<K>(&self, enable: bool)
where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
{
let tid = TypeId::of::<K>();
let mut requests = self.requests.lock().unwrap();
let typed_requests = requests
.get_mut(&tid)
.unwrap()
.downcast_mut::<Requests<K, T>>()
.unwrap();
typed_requests.disable_cache = !enable;
}
/// Use this `DataLoader` load a data.
pub async fn load_one<K>(&self, key: K) -> Result<Option<T::Value>, T::Error>
where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
{
let mut values = self.load_many(std::iter::once(key.clone())).await?;
Ok(values.remove(&key))
}
fn update_cache<K>(&self, values: &HashMap<K, T::Value>)
where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
{
let tid = TypeId::of::<K>();
let mut requests = self.requests.lock().unwrap();
let typed_requests = requests
.get_mut(&tid)
.unwrap()
.downcast_mut::<Requests<K, T>>()
.unwrap();
for (key, value) in values {
typed_requests
.cache_storage
.insert(Cow::Borrowed(key), Cow::Borrowed(value));
}
}
async fn immediate_load<K>(&self)
where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
{
let tid = TypeId::of::<K>();
let (disable_cache, (keys, pending)) = {
let mut requests = self.requests.lock().unwrap();
let typed_requests = requests
.get_mut(&tid)
.unwrap()
.downcast_mut::<Requests<K, T>>()
.unwrap();
(typed_requests.disable_cache, typed_requests.take())
};
if !keys.is_empty() {
let disable_cache = disable_cache || self.disable_cache.load(Ordering::SeqCst);
do_load(&self.loader, keys, pending, |values| {
// Update cache
if !disable_cache {
self.update_cache(values);
}
})
.await;
}
}
/// Use this `DataLoader` to load some data.
pub async fn load_many<K, I>(&self, keys: I) -> Result<HashMap<K, T::Value>, T::Error>
where
K: Send + Sync + Hash + Eq + Clone + 'static,
I: IntoIterator<Item = K>,
T: Loader<K>,
{
enum Action {
ImmediateLoad,
StartFetch,
Delay,
}
let tid = TypeId::of::<K>();
let (action, rx) = {
let mut requests = self.requests.lock().unwrap();
let typed_requests = requests
.entry(tid)
.or_insert_with(|| Box::new(Requests::<K, T>::new(&self.cache_factory)))
.downcast_mut::<Requests<K, T>>()
.unwrap();
let prev_count = typed_requests.keys.len();
let mut keys_set = HashSet::new();
let mut use_cache_values = HashMap::new();
if typed_requests.disable_cache || self.disable_cache.load(Ordering::SeqCst) {
keys_set = keys.into_iter().collect();
} else {
for key in keys {
if let Some(value) = typed_requests.cache_storage.get(&key) {
// Already in cache
use_cache_values.insert(key.clone(), value.clone());
} else {
keys_set.insert(key);
}
}
}
if !use_cache_values.is_empty() && keys_set.is_empty() {
return Ok(use_cache_values);
} else if use_cache_values.is_empty() && keys_set.is_empty() {
return Ok(Default::default());
}
typed_requests.keys.extend(keys_set.clone());
let (tx, rx) = oneshot::channel();
typed_requests.pending.push((
keys_set,
ResSender {
use_cache_values,
tx,
},
));
if typed_requests.keys.len() >= self.max_batch_size {
(Action::ImmediateLoad, rx)
} else {
(
if !typed_requests.keys.is_empty() && prev_count == 0 {
Action::StartFetch
} else {
Action::Delay
},
rx,
)
}
};
match action {
Action::ImmediateLoad => self.immediate_load::<K>().await,
Action::StartFetch => {
Delay::new(self.delay).await;
self.immediate_load::<K>().await;
}
Action::Delay => {}
}
rx.await.unwrap()
}
/// Feed some data into the cache.
///
/// **NOTE: If the cache type is [NoCache], this function will not take effect. **
pub async fn feed_many<K, I>(&self, values: I)
where
K: Send + Sync + Hash + Eq + Clone + 'static,
I: IntoIterator<Item = (K, T::Value)>,
T: Loader<K>,
{
let tid = TypeId::of::<K>();
let mut requests = self.requests.lock().unwrap();
let typed_requests = requests
.entry(tid)
.or_insert_with(|| Box::new(Requests::<K, T>::new(&self.cache_factory)))
.downcast_mut::<Requests<K, T>>()
.unwrap();
for (key, value) in values {
typed_requests
.cache_storage
.insert(Cow::Owned(key), Cow::Owned(value));
}
}
/// Feed some data into the cache.
///
/// **NOTE: If the cache type is [NoCache], this function will not take effect. **
pub async fn feed_one<K>(&self, key: K, value: T::Value)
where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
{
self.feed_many(std::iter::once((key, value))).await;
}
/// Clears the cache.
///
/// **NOTE: If the cache type is [NoCache], this function will not take effect. **
pub fn clear<K>(&self)
where
K: Send + Sync + Hash + Eq + Clone + 'static,
T: Loader<K>,
{
let tid = TypeId::of::<K>();
let mut requests = self.requests.lock().unwrap();
let typed_requests = requests
.entry(tid)
.or_insert_with(|| Box::new(Requests::<K, T>::new(&self.cache_factory)))
.downcast_mut::<Requests<K, T>>()
.unwrap();
typed_requests.cache_storage.clear();
}
}
#[cfg(test)]
mod tests {
use super::*;
use fnv::FnvBuildHasher;
use std::sync::Arc;
struct MyLoader;
#[async_trait::async_trait]
impl Loader<i32> for MyLoader {
type Value = i32;
type Error = ();
async fn load(&self, keys: &[i32]) -> Result<HashMap<i32, Self::Value>, Self::Error> {
assert!(keys.len() <= 10);
Ok(keys.iter().copied().map(|k| (k, k)).collect())
}
}
#[async_trait::async_trait]
impl Loader<i64> for MyLoader {
type Value = i64;
type Error = ();
async fn load(&self, keys: &[i64]) -> Result<HashMap<i64, Self::Value>, Self::Error> {
assert!(keys.len() <= 10);
Ok(keys.iter().copied().map(|k| (k, k)).collect())
}
}
#[tokio::test]
async fn test_dataloader() {
let loader = Arc::new(DataLoader::new(MyLoader).max_batch_size(10));
assert_eq!(
futures_util::future::try_join_all((0..100i32).map({
let loader = loader.clone();
move |n| {
let loader = loader.clone();
async move { loader.load_one(n).await }
}
}))
.await
.unwrap(),
(0..100).map(Option::Some).collect::<Vec<_>>()
);
assert_eq!(
futures_util::future::try_join_all((0..100i64).map({
let loader = loader.clone();
move |n| {
let loader = loader.clone();
async move { loader.load_one(n).await }
}
}))
.await
.unwrap(),
(0..100).map(Option::Some).collect::<Vec<_>>()
);
}
#[tokio::test]
async fn test_duplicate_keys() {
let loader = Arc::new(DataLoader::new(MyLoader).max_batch_size(10));
assert_eq!(
futures_util::future::try_join_all([1, 3, 5, 1, 7, 8, 3, 7].iter().copied().map({
let loader = loader.clone();
move |n| {
let loader = loader.clone();
async move { loader.load_one(n).await }
}
}))
.await
.unwrap(),
[1, 3, 5, 1, 7, 8, 3, 7]
.iter()
.copied()
.map(Option::Some)
.collect::<Vec<_>>()
);
}
#[tokio::test]
async fn test_dataloader_load_empty() {
let loader = DataLoader::new(MyLoader);
assert!(loader.load_many::<i32, _>(vec![]).await.unwrap().is_empty());
}
#[tokio::test]
async fn test_dataloader_with_cache() {
let loader = DataLoader::with_cache(MyLoader, HashMapCache::default());
loader.feed_many(vec![(1, 10), (2, 20), (3, 30)]).await;
// All from the cache
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 10), (2, 20), (3, 30)].into_iter().collect()
);
// Part from the cache
assert_eq!(
loader.load_many(vec![1, 5, 6]).await.unwrap(),
vec![(1, 10), (5, 5), (6, 6)].into_iter().collect()
);
// All from the loader
assert_eq!(
loader.load_many(vec![8, 9, 10]).await.unwrap(),
vec![(8, 8), (9, 9), (10, 10)].into_iter().collect()
);
// Clear cache
loader.clear::<i32>();
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 1), (2, 2), (3, 3)].into_iter().collect()
);
}
#[tokio::test]
async fn test_dataloader_with_cache_hashmap_fnv() {
let loader = DataLoader::with_cache(MyLoader, HashMapCache::<FnvBuildHasher>::new());
loader.feed_many(vec![(1, 10), (2, 20), (3, 30)]).await;
// All from the cache
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 10), (2, 20), (3, 30)].into_iter().collect()
);
// Part from the cache
assert_eq!(
loader.load_many(vec![1, 5, 6]).await.unwrap(),
vec![(1, 10), (5, 5), (6, 6)].into_iter().collect()
);
// All from the loader
assert_eq!(
loader.load_many(vec![8, 9, 10]).await.unwrap(),
vec![(8, 8), (9, 9), (10, 10)].into_iter().collect()
);
// Clear cache
loader.clear::<i32>();
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 1), (2, 2), (3, 3)].into_iter().collect()
);
}
#[tokio::test]
async fn test_dataloader_disable_all_cache() {
let loader = DataLoader::with_cache(MyLoader, HashMapCache::default());
loader.feed_many(vec![(1, 10), (2, 20), (3, 30)]).await;
// All from the loader
loader.enable_all_cache(false);
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 1), (2, 2), (3, 3)].into_iter().collect()
);
// All from the cache
loader.enable_all_cache(true);
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 10), (2, 20), (3, 30)].into_iter().collect()
);
}
#[tokio::test]
async fn test_dataloader_disable_cache() {
let loader = DataLoader::with_cache(MyLoader, HashMapCache::default());
loader.feed_many(vec![(1, 10), (2, 20), (3, 30)]).await;
// All from the loader
loader.enable_cache::<i32>(false);
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 1), (2, 2), (3, 3)].into_iter().collect()
);
// All from the cache
loader.enable_cache::<i32>(true);
assert_eq!(
loader.load_many(vec![1, 2, 3]).await.unwrap(),
vec![(1, 10), (2, 20), (3, 30)].into_iter().collect()
);
}
}